Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Parkinsonism Relat Disord ; 121: 106034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382401

RESUMO

INTRODUCTION: Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS: We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS: We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION: In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.


Assuntos
Tremor Essencial , Humanos , Tremor Essencial/cirurgia , Tremor , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Cerebelo/diagnóstico por imagem , Cognição
2.
J Neurol ; 271(3): 1451-1461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032372

RESUMO

BACKGROUND: Current pathophysiological models of Parkinson's disease (PD) assume a malfunctioning network being adjusted by the DBS signal. As various authors showed a main involvement of the cerebellum within this network, cerebello-cerebral fiber tracts are gaining special interest regarding the mediation of DBS effects. OBJECTIVES: The crossing and non-decussating fibers of the dentato-rubro-thalamic tract (c-DRTT/nd-DRTT) and the subthalamo-ponto-cerebellar tract (SPCT) are thought to build up an integrated network enabling a bidimensional communication between the cerebellum and the basal ganglia. The aim of this study was to investigate the influence of these tracts on clinical control of Parkinsonian tremor evoked by DBS. METHODS: We analyzed 120 electrode contacts from a cohort of 14 patients with tremor-dominant or equivalence-type PD having received bilateral STN-DBS. Probabilistic tractography was performed to depict the c-DRTT, nd-DRTT, and SPCT. Distance maps were calculated for the tracts and correlated to clinical tremor control for each electrode pole. RESULTS: A significant difference between "effective" and "less-effective" contacts was only found for the c-DRTT (p = 0.039), but not for the SPCT, nor the nd-DRTT. In logistic and linear regressions, significant results were also found for the c-DRTT only (pmodel logistic = 0.035, ptract logistic = 0,044; plinear = 0.027). CONCLUSIONS: We found a significant correlation between the distance of the DBS electrode pole to the c-DRTT and the clinical efficacy regarding tremor reduction. The c-DRTT might therefore play a major role in the mechanisms of alleviation of Parkinsonian tremor and could eventually serve as a possible DBS target for tremor-dominant PD in future.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Humanos , Tremor/etiologia , Tremor/terapia , Estimulação Encefálica Profunda/métodos , Tálamo , Cerebelo/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/terapia
3.
Hum Brain Mapp ; 44(15): 5153-5166, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37605827

RESUMO

BACKGROUND: Spatial patterns of brain functional connectivity can vary substantially at the individual level. Applying cortical surface-based approaches with individualized rather than group templates may accelerate the discovery of biological markers related to psychiatric disorders. We investigated cortico-subcortical networks from multi-cohort data in people with schizophrenia spectrum disorders (SSDs) and healthy controls (HC) using individualized connectivity profiles. METHODS: We utilized resting-state and anatomical MRI data from n = 406 participants (n = 203 SSD, n = 203 HC) from four cohorts. Functional timeseries were extracted from previously defined intrinsic network subregions of the striatum, thalamus, and cerebellum as well as 80 cortical regions of interest, representing six intrinsic networks using (1) volume-based approaches, (2) a surface-based group atlas approaches, and (3) Personalized Intrinsic Network Topography (PINT). RESULTS: The correlations between all cortical networks and the expected subregions of the striatum, cerebellum, and thalamus were increased using a surface-based approach (Cohen's D volume vs. surface 0.27-1.00, all p < 10-6 ) and further increased after PINT (Cohen's D surface vs. PINT 0.18-0.96, all p < 10-4 ). In SSD versus HC comparisons, we observed robust patterns of dysconnectivity that were strengthened using a surface-based approach and PINT (Number of differing pairwise-correlations: volume: 404, surface: 570, PINT: 628, FDR corrected). CONCLUSION: Surface-based and individualized approaches can more sensitively delineate cortical network dysconnectivity differences in people with SSDs. These robust patterns of dysconnectivity were visibly organized in accordance with the cortical hierarchy, as predicted by computational models.


Assuntos
Córtex Cerebral , Neuroimagem Funcional , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Masculino , Feminino , Adulto , Córtex Cerebral/diagnóstico por imagem , Adolescente , Adulto Jovem , Imageamento por Ressonância Magnética , Descanso , Corpo Estriado/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem
4.
Cereb Cortex ; 33(15): 9250-9262, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293735

RESUMO

The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Adulto , Criança , Humanos , Adulto Jovem , Cerebelo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Corpo Estriado
5.
Brain Topogr ; 36(4): 476-499, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37133782

RESUMO

Humans and monkey studies showed that specific sectors of cerebellum and basal ganglia activate not only during execution but also during observation of hand actions. However, it is unknown whether, and how, these structures are engaged during the observation of actions performed by effectors different from the hand. To address this issue, in the present fMRI study, healthy human participants were required to execute or to observe grasping acts performed with different effectors, namely mouth, hand, and foot. As control, participants executed and observed simple movements performed with the same effectors. The results show that: (1) execution of goal-directed actions elicited somatotopically organized activations not only in the cerebral cortex but also in the cerebellum, basal ganglia, and thalamus; (2) action observation evoked cortical, cerebellar and subcortical activations, lacking a clear somatotopic organization; (3) in the territories displaying shared activations between execution and observation, a rough somatotopy could be revealed in both cortical, cerebellar and subcortical structures. The present study confirms previous findings that action observation, beyond the cerebral cortex, also activates specific sectors of cerebellum and subcortical structures and it shows, for the first time, that these latter are engaged not only during hand actions observation but also during the observation of mouth and foot actions. We suggest that each of the activated structures processes specific aspects of the observed action, such as performing internal simulation (cerebellum) or recruiting/inhibiting the overt execution of the observed action (basal ganglia and sensory-motor thalamus).


Assuntos
Cerebelo , Mãos , Humanos , Mãos/fisiologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Boca/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
6.
Comput Intell Neurosci ; 2022: 8744982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082347

RESUMO

Objective: The potential of neurofeedback to alter the M1-cerebellum connectivity was explored using motor imagery-based rt-fMRI. These regions were chosen due to their importance in motor performance and motor rehabilitation. Methods: Four right-handed individuals were recruited to examine the potential to change the M1-cerebellum neurofeedback link. The University of Glasgow Cognitive Neuroimaging Centre used a 3T MRI scanner from January 2019 to January 2020 to conduct this prospective study. Everyone participated in each fMRI session, which included six NF training runs. Participants were instructed to imagine complicated hand motions during the NF training to raise a thermometer bar's height. To contrast the correlation coefficients between the initial and last NF runs, a t-test was performed post hoc. Results: The neurofeedback connection between M1 and the cerebellum was strengthened in each participant. Motor imagery strategy was a significant task in training M1-cerebellum connectivity as participants used it successfully to enhance the activation level between these regions during M1-cerebellum modulation using real-time fMRI. The t-test and linear regression, on the other hand, showed this increase to be insignificant. Conclusion: A novel technique to manipulate M1-cerebellum connectivity was discovered using real-time fMRI NF. This study showed that each participant's neurofeedback connectivity between M1 and cerebellum was enhanced. This increase, on the other hand, was insignificant statistically. The results showed that the connectivity between both areas increased positively. Through the integration of fMRI and neurofeedback, M1-cerebellum connectivity can be positively affected.


Assuntos
Neurorretroalimentação , Mapeamento Encefálico/métodos , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/fisiologia , Estudos Prospectivos
7.
Neuroimage Clin ; 35: 103032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35597028

RESUMO

Crossed cerebellar diaschisis (CCD) has been widely investigated in patients with supratentorial hypometabolism, however, the available evidence about the metabolic feature of CCD in patients with contralateral supratentorial hypermetabolism is lacking. This study aimed to assess the metabolic asymmetrical profile, network pattern and predisposing factors for the hypermetabolism-associated CCD, by using voxel-based asymmetry index (AI) and brain network analyses. Seventy CCD positive (CCD+) and 99 CCD negative (CCD-) patients with unilateral supratentorial hypermetabolism were introduced. Among different brain regions with AImax or AImin, striatum & thalamus was accompanied by the highest positive rate of CCD (85.7% or 70.1%, respectively). CCD+ group had significantly greater AImax (median [IQR], 0.62 [0.44-0.84] vs. 0.47 [0.35-0.61]), supratentorial hypermetabolic volume (1183.5 [399.3-3026.8] vs. 386.0 [152.0-1193.0]) and hypometabolic volume (37796.5 [24741.8-53278.0] vs. 3337.0 [1020.0-17193.0]), and lower AImin (-0.85 [-1.05--0.73] vs. -0.49 [-0.68--0.35]) compared with CCD- group (all P < 0.001). Logistic regression analysis manifested that patients with AImin located at striatum & thalamus were 16.4 times more likely to present CCD than those at frontal lobe (OR = 16.393; 95% CI, 4.463-60.207; P < 0.001), and the occurrence of CCD was also associated with AImax (OR = 49.594; 95% CI, 5.519-445.653; P < 0.001) and AImin (OR = 3.133 × 10-4, 95% CI, 1.693 × 10-5-5.799 × 10-3, P < 0.001). Brain network analysis indicated that the relative hypermetabolism in the contralateral supplementary motor cortex (SMC) and precuneus gyrus were constant in the CCD related patterns. These results demonstrated that the greater AImax, lower AImin and AImin located at striatum & thalamus should be predisposing factors for CCD in patients with unilateral supratentorial hypermetabolism. Relative increased activities in the contralateral SMC and precuneus gyrus might be attributed to a compensatory mechanism for the abnormal brain network related to CCD.


Assuntos
Doenças Cerebelares , Diásquise , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Circulação Cerebrovascular , Lobo Frontal , Humanos , Tálamo/diagnóstico por imagem
8.
Mult Scler ; 28(4): 550-560, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34378437

RESUMO

BACKGROUND: The underlying pathogenesis of surface-in grey matter abnormalities in MS, demonstrated by both neuropathology and advanced MRI analyses, is under investigation and it might be related to CSF-mediated mechanism of inflammation and/or damage. OBJECTIVE: To examine the link of CSF inflammatory profile with the damage of three regions early-involved in MS and bordering with CSF: thalamus, hippocampus and cerebellum. METHODS: In this longitudinal, prospective study, we evaluated, in 109 relapsing-remitting MS patients, at diagnosis and after 2-year follow-up, the association between the baseline CSF level of 19 inflammatory mediators and the volume changes of thalamus, hippocampus, cerebellar cortex and control regions (globus pallidus, putamen). RESULTS: The multivariable analysis showed that the CXCL13 and sCD163 CSF levels at baseline were independent predictors of thalamus (Rmodel2=0.80; p < 0.001) and hippocampus (Rmodel2=0.47; p < 0.001) volume change after 2-year follow-up. These molecules, plus CCL25, IFN-γ and fibrinogen, were independent predictors of the cerebellar cortex volume loss (Rmodel2=0.60; p < 0.001). No independent predictors of volume changes of the control regions were found. CONCLUSION: Our results indicate an association between the CSF inflammatory profile and grey matter volume loss of regions anatomically close to CSF boundaries, thus supporting the hypothesis of a surface-in GM damage in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Atrofia/patologia , Encéfalo/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos Prospectivos , Tálamo/diagnóstico por imagem , Tálamo/patologia
9.
Cerebellum ; 21(1): 101-115, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34052968

RESUMO

The objective of this study was to identify the decussating dentato-rubro-thalamic tract (d-DRTT) and its afferent and efferent connections in healthy humans using diffusion spectrum imaging (DSI) techniques. In the present study, the trajectory and lateralization of the d-DRTT was explored using data from subjects in the Massachusetts General Hospital-Human Connectome Project adult diffusion dataset. The afferent and efferent networks that compose the cerebello-thalamo-cerebral pathways were also reconstructed. Correlation analysis was performed to identify interrelationships between subdivisions of the cerebello-dentato-rubro-thalamic and thalamo-cerebral connections. The d-DRTT was visualized bilaterally in 28 subjects. According to a normalized quantitative anisotropy and lateralization index evaluation, the left and right d-DRTT were relatively symmetric. Afferent regions were found mainly in the posterior cerebellum, especially the entire lobule VII (crus I, II and VIIb). Efferent fibers mainly are projected to the contralateral frontal cortex, including the motor and nonmotor regions. Correlations between cerebello-thalamic connections and thalamo-cerebral connections were positive, including the lobule VIIa (crus I and II) to the medial prefrontal cortex (MPFC) and the dorsolateral prefrontal cortex and lobules VI, VIIb, VIII, and IX, to the MPFC and motor and premotor areas. These results provide DSI-based tratographic evidence showing segregated and parallel cerebellar outputs to cerebral regions. The posterior cerebellum may play an important role in supporting and handling cognitive activities through d-DRTT. Future studies will allow for a more comprehensive understanding of cerebello-cerebral connections.


Assuntos
Córtex Motor , Tálamo , Adulto , Cerebelo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem
10.
Neuroimage Clin ; 33: 102919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34929584

RESUMO

Dystonic tremor syndromes are highly burdensome and treatment is often inadequate. This is partly due to poor understanding of the underlying pathophysiology. Several lines of research suggest involvement of the cerebello-thalamo-cortical circuit and the basal ganglia in dystonic tremor syndromes, but their role is unclear. Here we aimed to investigate the contribution of the cerebello-thalamo-cortical circuit and the basal ganglia to the pathophysiology of dystonic tremor syndrome, by directly linking tremor fluctuations to cerebral activity during scanning. In 27 patients with dystonic tremor syndrome (dystonic tremor: n = 23; tremor associated with dystonia: n = 4), we used concurrent accelerometery and functional MRI during a posture holding task that evoked tremor, alternated with rest. Using multiple regression analyses, we separated tremor-related activity from brain activity related to (voluntary) posture holding. Using dynamic causal modelling, we tested for altered effective connectivity between tremor-related brain regions as a function of tremor amplitude fluctuations. Finally, we compared grey matter volume between patients (n = 27) and matched controls (n = 27). We found tremor-related activity in sensorimotor regions of the bilateral cerebellum, contralateral posterior and anterior ventral lateral nuclei of the thalamus (VLp and VLa), contralateral primary motor cortex (hand area), contralateral pallidum, and the bilateral frontal cortex (laterality with respect to the tremor). Grey matter volume was increased in patients compared to controls in the portion of contralateral thalamus also showing tremor-related activity, as well as in bilateral medial and left lateral primary motor cortex, where no tremor-related activity was present. Effective connectivity analyses showed that inter-regional coupling in the cerebello-thalamic pathway, as well as the thalamic self-connection, were strengthened as a function of increasing tremor power. These findings indicate that the pathophysiology of dystonic tremor syndromes involves functional and structural changes in the cerebello-thalamo-cortical circuit and pallidum. Deficient input from the cerebellum towards the thalamo-cortical circuit, together with hypertrophy of the thalamus, may play a key role in the generation of dystonic tremor syndrome.


Assuntos
Distonia , Tremor Essencial , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem , Tremor/diagnóstico por imagem
11.
Br J Radiol ; 95(1130): 20210826, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918548

RESUMO

OBJECTIVES: To evaluate the effects of combat sports on cerebellar function in adolescents based on resting-state functional MRI (rs-fMRI). METHODS: Rs-fMRI data were acquired from the combat sports (CS) group (n = 32, aged 14.2 ± 1.1 years) and non-athlete healthy control (HC) group (n = 29, aged 14.8 ± 0.9 years). The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) within the cerebellum was calculated and then compared between the two groups. RESULTS: None of these participants displayed intracranial lesions on conventional MRI and microhemorrhages on SWI. Compared with the HC group, the CS group showed decreased ALFF and ReHo in the bilateral cerebellum, mainly located in the inferior regions of the cerebellum (Cerebellum_8, Cerebellum_9, Cerebellum_7b, and Cerebellum_Crus2). While increased FC was found within the cerebellar network, mainly located in the superior regions near the midline (bilateral Cerebellum_6, Cerebellum_Crus1_R, and Vermis_6). There is no internetwork FC change between the CEN and other networks. CONCLUSION: This study confirmed extensive effects of combat sports on cerebellar rs-fMRI in adolescents, which could enhance the understanding of cerebellar regulatory mechanism under combat conditions, and provide additional information about cerebellar protective inhibition and compensatory adaptation. ADVANCES IN KNOWLEDGE: Adolescent combat participants are an ideal model to study training-induced brain plasticity and vulnerability. Relative to task-related fMRI, rs-fMRI can bring more information about cerebellar regulation and explain the Central Governor Model more comprehensively.


Assuntos
Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Artes Marciais/fisiologia , Luta Romana/fisiologia , Adolescente , Estudos de Casos e Controles , Cerebelo/fisiologia , Conectoma , Feminino , Humanos , Masculino , Descanso , Fatores de Tempo
12.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1250-1255, 2021 Dec 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34911608

RESUMO

OBJECTIVES: To study the changes in biochemical metabolites in the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder (ASD). METHODS: In this prospective study, magnetic resonance spectroscopy (MRS) with point-resolved spatial selection was used to analyze the thalamus and the cerebellum at both sides in 50 children with ASD aged 2-6 years. Creatine (Cr) was as the internal standard to measure the relative values of N-acetylaspartate (NAA)/Cr, choline (Cho)/Cr, myoinositol (MI)/Cr, and glutamine and glutamate complex (Glx)/Cr, and the differences in metabolites and their association with clinical symptoms were compared. RESULTS: In the children with ASD, NAA/Cr in the left thalamus was positively correlated with the scores of hearing-language and hand-eye coordination in the Griffiths Development Scales-Chinese (P<0.05). Cho/Cr in the right cerebellum was positively correlated with the scores of personal-social competence, hearing-language, and hand-eye coordination (P<0.05). NAA/Cr and Glx/Cr in the left thalamus were positively correlated with those in the left cerebellum (P<0.05). There was no significant difference in metabolites between the left and right sides of the thalamus and the cerebellum in the children with ASD (P>0.05). CONCLUSIONS: There are metabolic disorders in the cerebellum and the thalamus in children with ASD, and there is a correlation between the changes of metabolites in the left cerebellum and the left thalamus. Some metabolic indexes are related to the clinical symptoms of ASD. MRS may reveal the pathological basis of ASD and provide a basis for diagnosis and prognosis assessment of ASD as a noninvasive and quantitative detection method.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Criança , Colina , Humanos , Espectroscopia de Ressonância Magnética , Estudos Prospectivos , Tálamo/diagnóstico por imagem
13.
Parkinsonism Relat Disord ; 91: 105-108, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562715

RESUMO

INTRODUCTION: The ventral intermediate nucleus of the thalamus (VIM) is an important relay station receiving cerebellar and pallidal fiber tracts. Data on structural visualization of the VIM however is limited and uncertainty prevails to what extent lesional approaches to treat tremor affect the VIM itself or passing tracts. The aim of the study was to analyze the localization of individual lesions with respect to the VIM and the cerebello-thalamic tract (CTT). METHODS: We employed ultrahigh resolution (7 Tesla) MRI to delineate the VIM and performed 3 T-DTI-imaging pre- and post-interventional in seven ET patients undergoing transcranial magnetic resonance guided focused ultrasound (tcMRgFUS). Tremor improvement was measured using a modified subscore of the Clinical Rating Scale for Tremor. RESULTS: All subjects showed substantial tremor improvement (88.5%, range 80.7%-94,8%) after tcMRgFUS. We found only a minor overlap of the lesions with the VIM (4%, range 1%-7%) but a larger overlap with the CTT (43%, range 23%-60%) in all subjects. CONCLUSIONS: Lesions within the CTT rather than the VIM seem to drive the tremorlytic response and clinical improvement in tcMRgFUS.


Assuntos
Cerebelo/diagnóstico por imagem , Tremor Essencial/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Idoso , Cerebelo/patologia , Tremor Essencial/patologia , Tremor Essencial/terapia , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade , Humanos , Masculino , Pessoa de Meia-Idade , Tálamo/patologia , Resultado do Tratamento , Núcleos Ventrais do Tálamo/patologia
14.
Mol Genet Metab ; 133(4): 386-396, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34226107

RESUMO

OBJECTIVE: Our study aimed to quantify structural changes in relation to metabolic abnormalities in the cerebellum, thalamus, and parietal cortex of patients with late-onset GM2-gangliosidosis (LOGG), which encompasses late-onset Tay-Sachs disease (LOTS) and Sandhoff disease (LOSD). METHODS: We enrolled 10 patients with LOGG (7 LOTS, 3 LOSD) who underwent a neurological assessment battery and 7 age-matched controls. Structural MRI and MRS were performed on a 3 T scanner. Structural volumes were obtained from FreeSurfer and normalized by total intracranial volume. Quantified metabolites included N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), creatine (Cr), and combined glutamate-glutamine (Glx). Metabolic concentrations were corrected for partial volume effects. RESULTS: Structural analyses revealed significant cerebellar atrophy in the LOGG cohort, which was primarily driven by LOTS patients. NAA was lower and mI higher in LOGG, but this was also significantly driven by the LOTS patients. Clinical ataxia deficits (via the Scale for the Assessment and Rating of Ataxia) were associated with neuronal injury (via NAA), neuroinflammation (via mI), and volumetric atrophy in the cerebellum. INTERPRETATION: The decrease of NAA in the cerebellum suggests that, in addition to cerebellar atrophy, there is ongoing impaired neuronal function and/or loss, while an increase in mI indicates possible neuroinflammation in LOGG (more so within the LOTS subvariant). Quantifying cerebellar atrophy in relation to neurometabolic differences in LOGG may lead to improvements in assessing disease severity, progression, and pharmacological efficacy. Lastly, additional neuroimaging studies in LOGG are required to contrast LOTS and LOSD more accurately.


Assuntos
Gangliosidoses GM2/diagnóstico por imagem , Gangliosidoses GM2/fisiopatologia , Transtornos de Início Tardio/diagnóstico por imagem , Transtornos de Início Tardio/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Análise Espectral/métodos , Adulto , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Doença de Sandhoff/diagnóstico por imagem , Doença de Sandhoff/fisiopatologia , Doença de Tay-Sachs/diagnóstico por imagem , Doença de Tay-Sachs/fisiopatologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Adulto Jovem
15.
Sci Rep ; 11(1): 15060, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301974

RESUMO

Evidence suggests that selective serotonin reuptake inhibitors (SSRIs) reorganize neural networks via a transient window of neuroplasticity. While previous findings support an effect of SSRIs on intrinsic functional connectivity, little is known regarding the influence of SSRI-administration on connectivity during sequence motor learning. To investigate this, we administered 20 mg escitalopram or placebo for 1-week to 60 healthy female participants undergoing concurrent functional magnetic resonance imaging and sequence motor training in a double-blind randomized controlled design. We assessed task-modulated functional connectivity with a psycho-physiological interaction (PPI) analysis in the thalamus, putamen, cerebellum, dorsal premotor, primary motor, supplementary motor, and dorsolateral prefrontal cortices. Comparing an implicit sequence learning condition to a control learning condition, we observed decreased connectivity between the thalamus and bilateral motor regions after 7 days of escitalopram intake. Additionally, we observed a negative correlation between plasma escitalopram levels and PPI connectivity changes, with higher escitalopram levels being associated with greater thalamo-cortico decreases. Our results suggest that escitalopram enhances network-level processing efficiency during sequence motor learning, despite no changes in behaviour. Future studies in more diverse samples, however, with quantitative imaging of neurochemical markers of excitation and inhibition, are necessary to further assess neural responses to escitalopram.


Assuntos
Citalopram/administração & dosagem , Aprendizagem/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto , Cerebelo/diagnóstico por imagem , Cerebelo/efeitos dos fármacos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Putamen/diagnóstico por imagem , Putamen/efeitos dos fármacos , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Adulto Jovem
16.
Ann Clin Transl Neurol ; 8(6): 1183-1199, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949799

RESUMO

OBJECTIVE: Identification of brain regions susceptible to quantifiable atrophy in sporadic Creutzfeldt-Jakob disease (sCJD) should allow for improved understanding of disease pathophysiology and development of structural biomarkers that might be useful in future treatment trials. Although brain atrophy is not usually present by visual assessment of MRIs in sCJD, we assessed whether using voxel-based morphometry (VBM) can detect group-wise brain atrophy in sCJD. METHODS: 3T brain MRI data were analyzed with VBM in 22 sCJD participants and 26 age-matched controls. Analyses included relationships of regional brain volumes with major clinical variables and dichotomization of the cohort according to expected disease duration based on prion molecular classification (i.e., short-duration/Fast-progressors (MM1, MV1, and VV2) vs. long-duration/Slow-progressors (MV2, VV1, and MM2)). Structural equation modeling (SEM) was used to assess network-level interactions of atrophy between specific brain regions. RESULTS: sCJD showed selective atrophy in cortical and subcortical regions overlapping with all but one region of the default mode network (DMN) and the insulae, thalami, and right occipital lobe. SEM showed that the effective connectivity model fit in sCJD but not controls. The presence of visual hallucinations correlated with right fusiform, bilateral thalami, and medial orbitofrontal atrophy. Interestingly, brain atrophy was present in both Fast- and Slow-progressors. Worse cognition was associated with bilateral mesial frontal, insular, temporal pole, thalamus, and cerebellum atrophy. INTERPRETATION: Brain atrophy in sCJD preferentially affects specific cortical and subcortical regions, with an effective connectivity model showing strength and directionality between regions. Brain atrophy is present in Fast- and Slow-progressors, correlates with clinical findings, and is a potential biomarker in sCJD.


Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Síndrome de Creutzfeldt-Jakob/patologia , Rede de Modo Padrão/patologia , Progressão da Doença , Rede Nervosa/patologia , Tálamo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Atrofia/patologia , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem
17.
Sci Rep ; 11(1): 10645, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017050

RESUMO

Until recently, brain networks underlying emotional voice prosody decoding and processing were focused on modulations in primary and secondary auditory, ventral frontal and prefrontal cortices, and the amygdala. Growing interest for a specific role of the basal ganglia and cerebellum was recently brought into the spotlight. In the present study, we aimed at characterizing the role of such subcortical brain regions in vocal emotion processing, at the level of both brain activation and functional and effective connectivity, using high resolution functional magnetic resonance imaging. Variance explained by low-level acoustic parameters (fundamental frequency, voice energy) was also modelled. Wholebrain data revealed expected contributions of the temporal and frontal cortices, basal ganglia and cerebellum to vocal emotion processing, while functional connectivity analyses highlighted correlations between basal ganglia and cerebellum, especially for angry voices. Seed-to-seed and seed-to-voxel effective connectivity revealed direct connections within the basal ganglia-especially between the putamen and external globus pallidus-and between the subthalamic nucleus and the cerebellum. Our results speak in favour of crucial contributions of the basal ganglia, especially the putamen, external globus pallidus and subthalamic nucleus, and several cerebellar lobules and nuclei for an efficient decoding of and response to vocal emotions.


Assuntos
Gânglios da Base/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Emoções/fisiologia , Imageamento por Ressonância Magnética , Voz/fisiologia , Estimulação Acústica , Acústica , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia
18.
Neuroimage ; 236: 118117, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940148

RESUMO

EEG slow waves, the hallmarks of NREM sleep are thought to be crucial for the regulation of several important processes, including learning, sensory disconnection and the removal of brain metabolic wastes. Animal research indicates that slow waves may involve complex interactions within and between cortical and subcortical structures. Conventional EEG in humans, however, has a low spatial resolution and is unable to accurately describe changes in the activity of subcortical and deep cortical structures. To overcome these limitations, here we took advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic (BOLD) fluctuations time-locked to slow waves of light sleep. Recordings were performed in twenty healthy adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the posterior brainstem and in portions of thalamus and cerebellum characterized by preferential functional connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-signal decreases were instead found in several areas, including insula and somatomotor cortex. Specifically, a slow signal increase preceded slow-wave onset and was followed by a delayed, stronger signal decrease. Similar hemodynamic changes were found to occur at different delays across most cortical brain areas, mirroring the propagation of electrophysiological slow waves, from centro-frontal to inferior temporo-occipital cortices. Finally, we found that the amplitude of electrophysiological slow waves was positively related to the magnitude and inversely related to the delay of cortical and subcortical BOLD-signal changes. These regional patterns of brain activity are consistent with theoretical accounts of the functions of sleep slow waves.


Assuntos
Tronco Encefálico/fisiologia , Ondas Encefálicas/fisiologia , Cerebelo/fisiologia , Acoplamento Neurovascular/fisiologia , Córtex Sensório-Motor/fisiologia , Sono de Ondas Lentas/fisiologia , Tálamo/fisiologia , Adulto , Tronco Encefálico/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Eletroencefalografia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Sensório-Motor/diagnóstico por imagem , Tálamo/diagnóstico por imagem
19.
Addict Biol ; 26(5): e13043, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33908137

RESUMO

The primary objective of this study was to identify the metabolic pattern in the brains of betel quid dependent (BQD) individuals using 18 F-2-fluoro-2-deoxy-D-glucose-positron emission tomography (18 F-FDG-PET). A total of 42 individuals (16 BQD individuals and 26 healthy controls, HCs) enrolled at the Department of Nuclear Medicine of Xiangya Hospital underwent brain 18 F-FDG-PET. Group comparisons using statistical parametric mapping (SPM) were performed to identify the 18 F-FDG-PET patterns. Standardized uptake value ratios of anterior cingulate, frontal, thalamus, parietal, occipital, temporal and cerebellum were calculated by SPM. The characteristics of abnormal metabolism in brain regions were quantified using the xjView toolbox, and a 3-D brain map was drawn using BrainNet Viewer. We found significant metabolic reduction in the bilateral middle prefrontal cortex (PFC) and the left orbital frontal gyrus (OFC). In contrast, hypermetabolism was observed in the inferior cerebellum, fusiform, superior cerebellum, parahippocampal, vermis, lingual and thalamus. However, we found no significant difference between the BQD and HC group in the anterior cingulate, thalamus, cerebellum and frontal, temporal, parietal and occipital lobes. In summary, we found abnormal 18 F-FDG-PET metabolic pattern in BQD individuals, and this pattern may help the treatment of BQD.


Assuntos
Areca/metabolismo , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Tabagismo/diagnóstico por imagem , Adulto , Mapeamento Encefálico/métodos , Cerebelo/diagnóstico por imagem , China , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos , Tálamo/diagnóstico por imagem
20.
Hum Brain Mapp ; 42(11): 3440-3449, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830581

RESUMO

The aberrant thalamocortical pathways of epilepsy have been detected recently, while its underlying effects on epilepsy are still not well understood. Exploring pathoglytic changes in two important thalamocortical pathways, that is, the basal ganglia (BG)-thalamocortical and the cerebellum-thalamocortical pathways, in people with idiopathic generalized epilepsy (IGE), could deepen our understanding on the pathological mechanism of this disease. These two pathways were reconstructed and investigated in this study by combining diffusion and functional MRI. Both pathways showed connectivity changes with the perception and cognition systems in patients. Consistent functional connectivity (FC) changes were observed mainly in perception regions, revealing the aberrant integration of sensorimotor and visual information in IGE. The pathway-specific FC alterations in high-order regions give neuroimaging evidence of the neural mechanisms of cognitive impairment and epileptic activities in IGE. Abnormal functional and structural integration of cerebellum, basal ganglia and thalamus could result in an imbalance of inhibition and excitability in brain systems of IGE. This study located the regulated cortical regions of BG and cerebellum which been affected in IGE, established possible links between the neuroimaging findings and epileptic symptoms, and enriched the understanding of the regulatory effects of BG and cerebellum on epilepsy.


Assuntos
Gânglios da Base/fisiopatologia , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma , Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiopatologia , Adulto , Gânglios da Base/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Epilepsia Generalizada/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA